F(5)=-16t^2+160

Simple and best practice solution for F(5)=-16t^2+160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(5)=-16t^2+160 equation:



(5)=-16F^2+160
We move all terms to the left:
(5)-(-16F^2+160)=0
We get rid of parentheses
16F^2-160+5=0
We add all the numbers together, and all the variables
16F^2-155=0
a = 16; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·16·(-155)
Δ = 9920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9920}=\sqrt{64*155}=\sqrt{64}*\sqrt{155}=8\sqrt{155}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{155}}{2*16}=\frac{0-8\sqrt{155}}{32} =-\frac{8\sqrt{155}}{32} =-\frac{\sqrt{155}}{4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{155}}{2*16}=\frac{0+8\sqrt{155}}{32} =\frac{8\sqrt{155}}{32} =\frac{\sqrt{155}}{4} $

See similar equations:

| 2*(5)^x=1250 | | 0.085x+0.04(30,000−x)=2,010 | | –4x–9=–5–6x | | 3x=72–3x | | 7(5+9)=7·x+7·9 | | 0=9(x+1) | | x3-5x²-4x=0 | | 4(x-2)/2=2(x+3)/6 | | 11x-4=x+36 | | -2(4+3x)=10-(5x-6) | | (4x+-2)+(11x+17)=180 | | 0=5x²-4x | | 5(x+2)=4+5x | | 15+-d=11 | | -1/6x+5=8 | | .3x=5.4 | | X/4+2/3=x/2-1 | | x3=5x²-4x | | X/4+2/3=x/2= | | -4y-9=3 | | 3(2c-1)=56 | | 3h=7(​7​/​2​​−​7/3​​h)−10 | | s^2–10s+16=0 | | ​4​k+3=14 | | 6x-5=2(x-4) | | -7=-(-4n+3n)+2(n-2) | | 2x+4=x^2-x | | 3/10x(-2/5)=2 | | 1/2x(x-15)1/2x(x-25))100=540 | | 8x^2+20x+36=0 | | x+26=10 | | 4x-3x+2=5x-10 |

Equations solver categories